Intelligent Network Application Part (INAP)
Intelligent Network Application Part (INAP) is the signaling protocol used in Intelligent Networking. Developed by the International Telecommunications Union (ITU), IN is recognized as a global standard. Within the International Telecommunications Union, a total functionality of the IN has been defined and implemented in digestible segments called capability sets. The first version to be released was Capability Set 1 (CS-1). Currently CS-2 is defined and available. The CAMEL Application Part (CAP) is a derivative of INAP and enables the use of INAP in mobile GSM networks.
INAP is a signaling protocol between a service switching point (SSP), network media resources (intelligent peripherals), and a centralized network database called a service control point (SCP). The SCP consists of operator or 3rd party derived service logic programs and data.
Service Switching Point (SSP) is a physical entity in the Intelligent Network that provides the switching functionality. SSP the point of subscription for the service user, and is responsible for detecting special conditions during call processing that cause a query for instructions to be issued to the SCP.
The SSP contains Detection Capability to detect requests for IN services. It also contains capabilities to communicate with other physical entities containing SCF, such as SCP, and to respond to instructions from the other physical entities. Functionally, an SSP contains a Call Control Function, a Service Switching Function, and, if the SSP is a local exchange, a Call Control Agent Function. It also may optionally contain Service Control Function, and/or a Specialized Resource Function, and/or a Service Data Function. The SSP may provide IN services to users connected to subtending Network Access Points.
The SSP is usually provided by the traditional switch manufacturers. These switches are programmable and they can be implemented using multipurpose processors. The main difference of SSP from an ordinary switch is in the software where the service control of IN is separated from the basic call control.
Service Control Point (SCP) validates and authenticates information from the service user, processing requests from the SSP and issuing responses.The SCP stores the service provider instructions and data that direct switch processing and provide call control. At predefined points during processing an incoming or outgoing call, the switch suspends what it is doing, packages up information it has regarding the processing of the call, and queries the SCP for further instruction. The SCP executes user-defined programs that analyze the current state of the call and the information received from the switch. The programs can then modify or create the call data that is sent back to the switch. The switch then analyzes the information received from the SCP and follows the provided instruction to further process the call.
Functionally, an SCP contains Service Control Function (SCF) and optionally also Service Data Function (SDF). The SCF is implemented in Service Logic Programs (SLP). The SCP is connected to SSPs by a signalling network. Multiple SCPs may contain the same SLPs and data to improve service reliability and to facilitate load sharing between SCPs. In case of external Service Data Point (SDP) the SCF can access data through a signalling network. The SDP may be in the same network as the SCP, or in another network. The SCP can be connected to SSPs, and optionally to IPs, through the signalling network. The SCP can also be connected to an IP via an SSP relay function. The SCP comprises the SCP node, the SCP platform, and applications. The node performs functions common to applications, or independent of any application; it provides all functions for handling service-related, administrative, and network messages. These functions include message discrimination, distribution, routing, and network management and testing. For example, when the SCP node receives a service-related message, it distributes the incoming message to the proper application. In turn, the application issues a response message to the node, which routes it to the appropriate network elements. The SCP node gathers data on all incoming and outgoing messages to assist in network administration and cost allocation. This data is collected at the node, and transmitted to an administrative system for processing.
Intelligent Peripheral (IP) provides resources such as customized and concatenated voice announcements, voice recognition, and Dual Tone Multi-Frequencies (DTMF) digit collection, and contains switching matrix to connect users to these resources. The IP supports flexible information interactions between a user and the network. Functionally, the IP contains the Special Resource Function. The IP may directly connect to one or more SSPs, and/or may connect to the signalling network.
Service Management Point (SMP) performs service management control, service provision control, and service deployment control. Examples of functions it can perform are database administration, network surveillance and testing, network traffic management, and network data collection. Functionally, the SMP contains the Service Management Function and, optionally, the Service Management Access Function and the Service Creation Environment
Function. The SMP can access all other Physical Entities.
Conceptual model of the Intelligent Network :
The IN standards present a conceptual model of the Intelligent Network that model and abstract the IN functionality in four planes:
The Service Plane (SP): This plane is of primary interest to service users and providers. It describes services and service features from a user perspective, and is not concerned with how the services are implemented within the network.
The Global Functional Plane (GFP): The GFP is of primary interest to the service designer. It describes units of functionality, known as service independent building blocks (SIBs) and it is not concerned with how the functionality is distributed in the network. Services and service features can be realised in the service plane by combining SIBs in the GFP.
The Distributed Functional Plane (DFP): This plane is of primary interest to network providers and designers. It defines the functional architecture of an IN-structured network in terms of network functionality, known as functional entities (FEs). SIBs in the GFP are realised in the DFP by a sequence of functional entity actions (FEAs) and their resulting information flows.
The Physical Plane (PP): Real view of the physical network.The PP is of primary interest to equipment providers. It describes the physical architecture for an IN-structured network in terms of physical entities (PEs) and the interfaces between them. The functional entities from the DFP are realised by physical entities in the physical plane.
Services that can be defined with INAP include:
Single number service: one number reaches a local number associated with the service
Personal access service: provide end user management of incoming calls
Disaster recovery service: define backup call destinations in case of disaster
Do not disturb service: call forward
Virtual private network short digit extension dialing service
Advantages created by the IN architecture:
extensive use of information processing techniques;
efficient use of network resources;
modularization of network functions;
integrated service creation and implementation by means of reusable standard network functions;
flexible allocation of network functions to physical entities;
portability of network functions among physical entities;
standardised communication between network functions via service independent interfaces;
customer control over their specific service attributes;
standardised management of service logic.
References:
SS7 Discussion Forum
http://www.item.ntnu.no/fag/ttm4130/stottelitteratur/IN.pdf
http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol4/vra/
Minggu, 15 Juni 2008
Signalling
•INAP: Intelligent Network Application Part •CAMEL: Customized Application for Mobile
GSM uses SS7 signalling for call control, mobility management, short messages and value-added services.
GSM uses SS7 signalling for call control, mobility management, short messages and value-added services.
•MTP1-3: Message Transfer Part
•SCCP: Signalling Connection Control Part
•TCAP: Transaction Capabilities Application Part
•MAP: Mobile Application Part
•BSSAP: Base Station Subsystem Application Part
•
Enhanced Logic
Intelligent Network (IN) Concept
The intelligent network concept: intelligence is taken out of exchanges and placed in computer nodes that are distributed throughout the network.
Intelligence => access to various databases
This provides the network operator with the means to develop and control services more efficiently. New capabilities can be rapidly introduced into the network. Once introduced, services are easily customized to meet individual customer's needs.
IN service subscriber and customer
In a typical IN service scenario, the network operator or a 3rd party service provider implements the service for one or several subscribers, after which customers can use the service.
Service subscriber = company offering the service (e.g. the 0800 number that anybody can call)
Customers = those who use the service (e.g. those who call the 0800 number)
Confusion possible:
IN service subscriber ¹ PSTN subscriber
IN services
A large number of IN services can be implemented by combining different “building blocks”:
- Called number translation (at SCP)
- Routing decision based on calling number, time, date, called user busy, called user alerting timeout, network load ...
- Announcements (from IP) or user notification (<= ISDN user signalling)
- DTMF number reception (at IP) and analysis (at SCP)
- Customised charging (at exchanges)
4G & IN
4G – Akhir dari Kejayaan Intelligent Network.
http://dasteld3ilkomuns.wordpress.com/
1G, 2G, 2.5G, 3G dan terakhir 4G merupakan generasi teknologi yang digunakan pada infrastruktur selular. Pada hari ini, Indonesia baru memasuki tahapan teknologi 2.5G. Secara sederhana dapat di identikan teknologi 1G adalah telepon analog / PSTN yang menggunakan selular. Teknologi 2G, 2.5G dan 3G merupakan ISDN di selular.
Intelligent Network (IN) secara sederhana merupakan inti dari infrastruktur telekomunikasi yang di operasikan oleh banyak operator telekomunikasi di Indonesia pada saat ini. Khususnya di dunia selular banyak bertumpu pada protokol SS7/IS-41/GSM MAP intelligent nodes.Teknik yang hampir sama juga berlaku untuk operator non-selular, seperti Telkom, Indosat & Satelindo.
Servis suara di 3G pada dasarnya sama dengan servis suara di ISDN. Handset digital selular pada dasarnya sebuah handset ISDN. Sialnya, ISDN pada kenyataannya tidak berhasil dengan baik untuk mendeploy servis suara yang baru maupun integrasi data / suara. Kita cukup beruntung dengan adanya 3G ternyata membuka kesempatan untuk uji coba teknologi Internet seperti Session Initiation Protocol (SIP) maupun menggunaan IP v6 (saat ini semua ISP komersial di Indonesia menggunakan IP v4 yang lebih tua). Ujicoba untuk integrasi SIP & IP v6 ke dalam 3G di lakukan dalam inisiatif 3GPP
http://dasteld3ilkomuns.wordpress.com/
1G, 2G, 2.5G, 3G dan terakhir 4G merupakan generasi teknologi yang digunakan pada infrastruktur selular. Pada hari ini, Indonesia baru memasuki tahapan teknologi 2.5G. Secara sederhana dapat di identikan teknologi 1G adalah telepon analog / PSTN yang menggunakan selular. Teknologi 2G, 2.5G dan 3G merupakan ISDN di selular.
Intelligent Network (IN) secara sederhana merupakan inti dari infrastruktur telekomunikasi yang di operasikan oleh banyak operator telekomunikasi di Indonesia pada saat ini. Khususnya di dunia selular banyak bertumpu pada protokol SS7/IS-41/GSM MAP intelligent nodes.Teknik yang hampir sama juga berlaku untuk operator non-selular, seperti Telkom, Indosat & Satelindo.
Servis suara di 3G pada dasarnya sama dengan servis suara di ISDN. Handset digital selular pada dasarnya sebuah handset ISDN. Sialnya, ISDN pada kenyataannya tidak berhasil dengan baik untuk mendeploy servis suara yang baru maupun integrasi data / suara. Kita cukup beruntung dengan adanya 3G ternyata membuka kesempatan untuk uji coba teknologi Internet seperti Session Initiation Protocol (SIP) maupun menggunaan IP v6 (saat ini semua ISP komersial di Indonesia menggunakan IP v4 yang lebih tua). Ujicoba untuk integrasi SIP & IP v6 ke dalam 3G di lakukan dalam inisiatif 3GPP
GSM 1800
GSM 1800: Frekuensi Besar, Jangkauan Sempit
http://dasteld3ilkomuns.wordpress.com/
Teknologi ponsel terus berkembang dari waktu ke waktu. Akan tetapi, bukan berarti yang terbaru adalah yang terhebat. Setiap jenis ada kekurangan dan kelebihan masing-masing.
Teknologi telepon selular di Indonesia saat ini telah berkembang begitu pesatnya. Jangan heran kalau minat konsumen pun makin meningkat. Ujung-ujungnya pengguna telepon selular pada tahun ini diduga akan bertambah dua kali lipat dibandingkan dengan tahun lalu.
Jenis telepon selular yang pertama kali masuk di Indonesia adalah jenis NMT (nordic mobile telephone). Jenis selular ini menggunakan frekuensi 450 mHz, tetapi khusus di Indonesia digunakan frekuensi 470 mHz. Daerah jangkauan NMT dapat mencapai 60 kilometer, sehingga memungkinkan NMT digunakan di daerah-daerah terpencil yang jauh dari pusat kota. Namun jenis selular pertama ini mempunyai kekurangan, yaitu bentuknya yang relatif besar sehingga membuat NMT kurang efektif dan efisien untuk dibawa bepergian.
Menyusul berkembangnya teknologi NMT, muncul pula teknologi baru selular yaitu AMPS (advance mobile phone system). Sistem AMPS menggunakan frekuensi 800 mHz dan daya jangkaunya sekitar 1,5 km sampai 2 km. Karena bentuknya yang ringan dan dapat dibawa dengan mudah, maka teknologi AMPS menjadi pilihan baru dalam berkomunikasi. Bahkan teknologi yang berasal dari Amerika Serikat ini pernah menjadi primadona dunia informasi dunia pada 1980-an sampai menjelang 1990-an.
Setelah berkembangnya AMPS, muncul pula sebuah teknologi selular digital CDMA (code division multiple access). CDMA adalah teknologi yang dikembangkan oleh militer Amerika Serikat pada 1989 dan mulai dioperasikan pada 1995. Teknologi CDMA dapat menggunakan frekuensi yang selama ini dipakai oleh AMPS yaitu 800 mHz. Cuma, CDMA juga dapat memakai frekuensi 1.700 mHz. Karena menggunakan teknologi yang sama, maka sistem AMPS yang analog akan dapat dengan sederhana bermigrasi ke sistem CDMA yang digital.
Pada saat yang hampir bersamaan dengan munculnya CDMA, teknologi GSM (global system for mobile communication) diperkenalkan. Dengan digunakannya sistem GSM yang digital, teknologi NMT atau AMPS yang analog praktis tidak dapat digunakan. Bagi para pengguna kedua sistem itu, hal ini sangat merugikan karena mereka telanjur memakai ponsel lama yang harganya relatif mahal. Hal ini menyebabkan banyak dari mereka enggan berpindah ke teknologi GSM. Namun setelah para operator GSM terlihat sangat serius dengan bisnisnya, maka mereka berlomba-lomba mencicipi teknologi baru tersebut. Hasilnya, saat ini sistem GSM-lah yang paling banyak digunakan di Indonesia untuk masalah ponsel.
Teknologi GSM yang kita pakai saat ini menggunakan frekuensi 900 mHz dengan daya jangkau 1,5 km sampai 2 km saja. Akan tetapi, daya jangkau itu dapat diperluas dengan menggunakan antena payung yang tinggi (umbrella). Dengan penggunaan antena payung, jarak jangkau GSM dapat mencapai 35 km.
Sebenarnya, ditinggalkannya sistem NMT dan AMPS bukan karena keduanya tidak dapat digunakan lagi, tetapi lebih karena kedua sistem itu sudah ketinggalan zaman–terutama NMT yang memang kurang nyaman untuk dibawa ke mana-mana. NMT dan AMPS di satu pihak masih mentransmisikan suara dengan cara analog, sedangkan CDMA dan GSM di pihak lain menggunakan teknologi digital yang menghasilkan kualitas suara yang jauh lebih baik. Oleh karena itu, AMPS dan NMT sering disebut sebagai selular generasi pertama, sedangkan GSM dan CDMA disebut sebagai selular generasi kedua.
http://dasteld3ilkomuns.wordpress.com/
Teknologi ponsel terus berkembang dari waktu ke waktu. Akan tetapi, bukan berarti yang terbaru adalah yang terhebat. Setiap jenis ada kekurangan dan kelebihan masing-masing.
Teknologi telepon selular di Indonesia saat ini telah berkembang begitu pesatnya. Jangan heran kalau minat konsumen pun makin meningkat. Ujung-ujungnya pengguna telepon selular pada tahun ini diduga akan bertambah dua kali lipat dibandingkan dengan tahun lalu.
Jenis telepon selular yang pertama kali masuk di Indonesia adalah jenis NMT (nordic mobile telephone). Jenis selular ini menggunakan frekuensi 450 mHz, tetapi khusus di Indonesia digunakan frekuensi 470 mHz. Daerah jangkauan NMT dapat mencapai 60 kilometer, sehingga memungkinkan NMT digunakan di daerah-daerah terpencil yang jauh dari pusat kota. Namun jenis selular pertama ini mempunyai kekurangan, yaitu bentuknya yang relatif besar sehingga membuat NMT kurang efektif dan efisien untuk dibawa bepergian.
Menyusul berkembangnya teknologi NMT, muncul pula teknologi baru selular yaitu AMPS (advance mobile phone system). Sistem AMPS menggunakan frekuensi 800 mHz dan daya jangkaunya sekitar 1,5 km sampai 2 km. Karena bentuknya yang ringan dan dapat dibawa dengan mudah, maka teknologi AMPS menjadi pilihan baru dalam berkomunikasi. Bahkan teknologi yang berasal dari Amerika Serikat ini pernah menjadi primadona dunia informasi dunia pada 1980-an sampai menjelang 1990-an.
Setelah berkembangnya AMPS, muncul pula sebuah teknologi selular digital CDMA (code division multiple access). CDMA adalah teknologi yang dikembangkan oleh militer Amerika Serikat pada 1989 dan mulai dioperasikan pada 1995. Teknologi CDMA dapat menggunakan frekuensi yang selama ini dipakai oleh AMPS yaitu 800 mHz. Cuma, CDMA juga dapat memakai frekuensi 1.700 mHz. Karena menggunakan teknologi yang sama, maka sistem AMPS yang analog akan dapat dengan sederhana bermigrasi ke sistem CDMA yang digital.
Pada saat yang hampir bersamaan dengan munculnya CDMA, teknologi GSM (global system for mobile communication) diperkenalkan. Dengan digunakannya sistem GSM yang digital, teknologi NMT atau AMPS yang analog praktis tidak dapat digunakan. Bagi para pengguna kedua sistem itu, hal ini sangat merugikan karena mereka telanjur memakai ponsel lama yang harganya relatif mahal. Hal ini menyebabkan banyak dari mereka enggan berpindah ke teknologi GSM. Namun setelah para operator GSM terlihat sangat serius dengan bisnisnya, maka mereka berlomba-lomba mencicipi teknologi baru tersebut. Hasilnya, saat ini sistem GSM-lah yang paling banyak digunakan di Indonesia untuk masalah ponsel.
Teknologi GSM yang kita pakai saat ini menggunakan frekuensi 900 mHz dengan daya jangkau 1,5 km sampai 2 km saja. Akan tetapi, daya jangkau itu dapat diperluas dengan menggunakan antena payung yang tinggi (umbrella). Dengan penggunaan antena payung, jarak jangkau GSM dapat mencapai 35 km.
Sebenarnya, ditinggalkannya sistem NMT dan AMPS bukan karena keduanya tidak dapat digunakan lagi, tetapi lebih karena kedua sistem itu sudah ketinggalan zaman–terutama NMT yang memang kurang nyaman untuk dibawa ke mana-mana. NMT dan AMPS di satu pihak masih mentransmisikan suara dengan cara analog, sedangkan CDMA dan GSM di pihak lain menggunakan teknologi digital yang menghasilkan kualitas suara yang jauh lebih baik. Oleh karena itu, AMPS dan NMT sering disebut sebagai selular generasi pertama, sedangkan GSM dan CDMA disebut sebagai selular generasi kedua.